Как нарисовать микроскоп карандашом — простой мастер-класс для начинающих

Содержание:

Типы микроскопов

От самого первого до инструмента, доступного сегодня, есть большая разница в технологии. Сегодня существуют различные виды микроскопов, которые способны увеличить объект в значительной степени. Они различаются по увеличению, разрешению, способу освещения, типу объекта, формированию изображения, глубине резкости и т. д.

Составной

Вид микроскопа – составной, обыкновенно используется в учебных заведениях и входит в категорию чаще всего применяемых в биологии. Он имеет две линзы, а именно объектив и окулярную линзу и обеспечивает увеличение 1500-х. Объектив окуляра имеет увеличение 10-х или 15-х. Инструмент используется для наблюдения за бактериями, простейшими, различными клетками и т. д.
Некоторые используют естественный свет, в то время как другие имеют осветитель, прикрепленный к основанию, который действует как источник света.

Образец помещают на площадку и наблюдают через линзы, которые имеют различную силу увеличения.

Световой

Вид микроскопа – световой, также называют оптическим. Объектив окуляра 10-х или 16-х и обеспечивает увеличение до 1500-х. Применяют при изучении анатомии и физиологии мельчайших существ.

Препаровальный

Его еще называют стереомикроскопом. Его сила увеличения меньше, чем другие типы микроскопов, но он дает трехмерную картину. Из-за низкой увеличительной мощности они используются для наблюдения небольших объектов. Необходимы в хирургических операциях, вскрытии, криминалистике и т. д.

Цифровой

Тип микроскопа – цифровой, имеет цифровую камеру, которая крепится к монитору. Он имеет оптическую линзу, а также датчики и обеспечивает увеличение в 1000 раз. Используется для получения снимков объекта с высоким разрешением.

Электронный

Электронный имеет высокое разрешение чем другие типы микроскопов. Строение устройства сложное и имеет схему испускающую пучок электронов, которые сталкиваются с объектом. Это один из лучших видов, используемых для изучения клеток.

Они бывает двух типов: сканирующий электронный и просвечивающий. Некоторые работают в вакууме, что снижает вероятность столкновения электронов с другими молекулами воздуха.

Просвечивающий электронный

Обеспечивает достаточно высокий уровень увеличения используя электронный луч дающий 2-мерное изображение. Электроны ударяют в объект, который делает его видимым. Объект виден темным на светлом фоне.

Сканирующий электронный

Это разновидность типа электронного микроскопа. Он имеет ниже увеличение, чем просвечивающий электронный, но может получить трехмерное изображение.

Фазовый контрастный

Эти виды микроскопов работают с помощью специального светового конденсатора. Свет падает на объект с разной скоростью. В этом устройстве можно увидеть неокрашенные и живые микроорганизмы. Также можно наблюдать различные части клетки, такие как митохондрии,лизосомы, тела Гольджи, ядра и т. д.

Люминесцентный

Этот тип микроскопа работает с помощью ультрафиолетового света. Ультрафиолетовый свет освещает образец и возбуждает электроны объекта, которые можно увидеть в разных цветах. Для подсветки объекта используются флуоресцентные красители. Ультрафиолетовый свет увеличивает разрешение, что полезно для идентификации микроорганизмов.

Хромосома

Хромосо́мы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для ее хранения, реализации и передачи.

Хромосомы четко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Геном человека состоит из 23 пар хромосом, которые содержатся в ядре, а также митохондриальной ДНК. 

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях.

Классификация микроскопов

Хотя современные микроскопы представляют собой удобные устройства для детального изучения различных микрообъектов, не существует универсального инструмента, который будет эффективен во всех ситуациях.

Сегодня существует множество различных конструкций микроскопов для разных задач. Классификация микроскопов производится в зависимости от класса или конструкции. Сначала мы рассмотрим деление микроскопов на классы. В мировой практике все микроскопы делят на три класса в зависимости от исследований для которых они предназначены.

Классы микроскопов

Еще одной важной классификацией микроскопов является деление в зависимости от конструкции микроскопа:

  1. Прямой микроскоп – объект исследования находиться под объективом. Предназначены для исследования небольших образцов и образцов на предметных стеклах. Увеличение прямых микроскопов варьируется от 25х до 1000х.

  2. Инвертированный микроскоп – объект исследования находиться над объективом. Предназначены для исследования клеток в специальной посуде и крупногабаритных образцов весом до 30 кг. Увеличение инвертированных микроскопов варьируется от 12,5х до 1000х.

  3. Стереомикроскопы — объект исследования находиться под объективом. Предназначены для получения объемных изображений. Микроскопы имеют два оптических пути, которые обеспечивают стереоэффект. Они широко используются в биологических исследованиях, в промышленности, криминалистике. Увеличение стереомикроскопов варьируется от 2х до 200х для рутинного и лабораторного классов, для исследовательского до 500х. В нашем каталоге такой вид микроскопов представлен моделью Leica M205. Это люминесцентный микроскоп, предназначенный для обнаружения трансгенных экспрессий. Благодаря этому возможно отобрать лучший для исследования образец.

  4. Цифровые микроскопы – это модели особой конструкции, как правило, макроскопы, в которых вместо тубуса с окулярами используется цифровая камера.

  5. Конфокальные микроскопы – предназначены для сверхсложных биологических исследований. Используются в основном в научно-исследовательских институтах.
  6. Электронные микроскопы – в качестве источника энергии вместо света используется поток электронов. Электронный микроскоп позволяет изучать объекты с увеличением 100 — 1 000 000 раз и большим разрешением. Используются в основном в научно-исследовательских институтах.
  7. Рентгеновские микроскопы — для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра. Рентгеновские микроскопы по разрешающей способности находятся между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновские микроскопы с разрешающей способностью около 5 нанометров

Ознакомившись с классификацией микроскопов можно сделать вывод, что это достаточно сложное оборудование. Поэтому мы всегда рекомендуем нашим клиентам не подбирать оборудование самостоятельно, а обращаться к нашим экспертам. Это люди с соответствующим специализированным образованием и большим опытом реализации решений для микроскопии под различные задачи. Они постоянно совершенствуют свои знания на тренингах от ведущих производителей решений для микроскопии.

Обратившись к нашим специалистам Вы можете быть уверенными что получите наилучшую конфигурацию оборудования, которая будет учитывать:

  • Задачи, которые стоят перед вами;
  • Требование мировых и региональных стандартов для выполнения эти задач;
  • Ваш бюджет.

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы

Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа

Виды микроскопов

Чтобы правильно определить преимущество использования световой микроскопии перед электронной, надо рассмотреть принцип действия микроскопов. Более подробно на занятиях по предмету «Биология» рассматриваются строение, принцип действия и правила использования светового микроскопа. Даются представления о работе электронного микроскопа, его возможностях при изучении биологических объектов. В некоторых заданиях требуется сравнить два вида микроскопии.

В оптическом (световом) микроскопе используется система линз, расположенных в окуляре и объективе. Изображение получается в результате преломления и рассеивания света. Приборы, основанные на световой технологии, позволяют добиться увеличения объектов в 140–2000 раз.

Что можно увидеть в световой микроскоп:

  • крупные структуры размером от 0,5–1 мкм (клетки с органеллами, включениями, кристаллы);
  • пластиды (лучше всего видны хлоропласты);
  • ядро с ядрышком;
  • аппарат Гольджи;
  • митохондрии.

В электронном микроскопе изображение получают с помощью рассеивания потока электронов. Достигается увеличение объекта до 20000 раз. Можно изучить ультраструктуру органелл клетки, строение вирусов.

Микроскоп своими руками — как сделать своими руками простой и мощный микроскоп (85 фото и видео)

Дети всегда мечтают, как минимум, о двух недоступных вещах: взглянуть в далекие миры и увидеть близкую и также невидимую жизнь. В первом случае речь идет о наблюдении за звездным миром через телескоп, а в другом – за жизнью через микроскоп.

Многие любители астрономии сами мастерят из линз подзорные трубы, сквозь которые просматривается небосвод гораздо дальше, чем в дедушкин «цейсовский» бинокль.

Как поживает инфузория туфелька?

Ниже мы детально расскажем дотошным ребятишкам о том, как сделать микроскоп своими руками в домашних условиях. Он, возможно, позволит им рассмотреть не только инфузорию туфельку. Это одноклеточный живой организм, который впервые они увидели в школе через настоящий микроскоп.

Микроскоп своими руками из линз — очень сложное технически оптическое устройство, на фото не все видно снаружи, основное кроется в корпусе.

В домашних условиях достичь качества изображения возможно, если линзы будут изготовлены профессионально.

Тогда увеличение вещи в несколько раз вполне достижимо. Мы представим схему конструкции, вполне неплохой самоделки, разработанной Л. Померанцевым.

Что необходимо для работы?

Купить в магазине оптики пару линз на десять диоптрий с плюсом. Приобретайте их небольшого диаметра, около двух сантиметров.

Забегая наперед, скажем, что одна линза будет установлена в окуляре, то есть там, где будет с ней соприкасаться глаз, другая — для объектива.

Диоптрии (Д) — это сила оптики, обратная фокусу (расстоянию). Одна единица равна метровому фокусу, две – полуметру. Поэтому десять Д – это всего 10 см. От них и будем конструировать.

Пошаговая методика сбора микроскопа

Подберите готовый или соберите сами цилиндр указанной длины и под окружности подобранных линз. Разделите его на 2 одинаковые части. В них укрепите диоптрийные стекла.

Внутренности закрасьте чёрной гуашью. Линзы в полутубусах приклейте картонными вставками-кольцами. Затем изготовьте ещё одну трубку – будущий тубус – с диаметром, чтобы две половинки с оптикой вошли в него плотно одна над другой. Внутри также окрасьте чёрным.

Теперь работа с деревом

Начертите циркулем на пятимиллиметровой фанере пару окружностей – одна диаметром 20 см, внутри нее другая – 12. Наружный и внутренний диаметры аккуратно выпилите лобзиком. Разрежьте на два полукруга.

Чтобы понять, что будете делать дальше, рассмотрите монтажную схему на сайте. Так как сделать штатив для микроскопа и все вместе непросто.

Полукруги в виде большой буквы «С» станут осью поворота микроскопа и носителем оптических систем. Они соединяются между собой сверху и снизу прямоугольниками (маркированы буквой «Г»), выступая на пару сантиметров за внутренние полукруги.

Верхняя «Г» с выступающей части вырезана по окружности тубуса в виде желобка, это будет верхнее его ложе. Регулировочный винт все скрепит, он будет немного прокручиваться, чтобы перемещать тубус вверх-вниз.

Как ни странно, но на этом креплении работа застопорится на какое-то время. Ведь  стопор необходим не только для прочного удержания тубуса, но и для его передвижения. Поэтому намертво закреплять не нужно. На заводе легко выходят из такого технического положения.

Как же лучше сделать стопор дома?

Разрежьте колодку «Г» по горизонтали (длине), в одну часть вставляете деревянный стержень винта, с насаженной на него трубочкой из резины или другого полимера, на клей сажаете обе половинки. Установите между буквами «С».

На винт с двух стороны приклейте рычаги для вращения, подойдут половинки от деревянной катушки для ниток. Оно будет и прочным, и удобным для управления тубусом. Резинка будет медленно двигать его в обе стороны.

Можно обойтись без этой сложной работы. Тубус закрепляется плотно, а наводить фокус будете передвижением линз.

Под столиком поместите прочно диафрагму – круг с дырочками от 2 до 10 мм, Она должна вращаться, а отверстия совмещаться  с отверстием столика. Она будет настраивать световой пучок. Под ней находится зеркальце 5х4 см, предусмотрите при его креплении способ изменять наклон. Так получится подсветка микроскопа своими руками.

Всё собранное укрепите на основной подставке. Она также из доски толщиной не менее 20-25 миллиметров любого дерева, желательно твердых пород, чтобы от влажности комнаты не растрескивалась.

Микроскоп настраиваете вращением зеркала, винтом тубуса и линзами в нем. Увеличение гарантировано в сотню раз, а то и значительнее. Сделайте фото микроскопа, изготовленного своими.

Следующим вашим шагом будет электронный микроскоп своими руками. Ведь все больше подобных исследований ведется по цифровым технологиям. И его собрать не сложнее обычного. Но это тема другой статьи.

История

История микроскопа может быть прослежена с конца 16-го или начала 17-го века. До сих пор ведутся споры о том, кто же на самом деле изобрел этот инструмент. Согласно новой всемирной энциклопедии, считается что прибор был предоставлен  производителями очков из Нидерландов: Хансу Липперши, Хансу и Захариасу Янсену.

Также Галилео Галилей в 1600-х годах изобрел устройство, внесшее свой вклад в область микроскопии. В его устройстве использовались линзы вогнутой и выпуклой формы.

Этот инструмент становился все более сложным с появлением науки и техники и теперь доступен в различных типах, которые используются для многих целей.

Наиболее распространенным среди них является самый старый и простейший тип микроскопа, называемый оптическим или световым микроскопом, который имеет три типа – простой, сложный свет и стерео.

Разновидности методов световой микроскопии

Выбор метода оптической микроскопии определяется особенностями объектов и целью исследования.

Светлое поле в потоке проходящего света

Данный метод основан на принципе прохождения потока света через образец. Предмет частично поглощает и рассеивает попадающие на него лучи, что позволяет сформировать изображение.

Светлое поле в потоке — метод, который построен на принципе прохождения света.

Светлопольную микроскопию применяют для изучения окрашенных тканей животных и растений, тонких шлифов и др. Для прохождения светового пучка препарат должен быть прозрачным.

Косое освещение

Данный метод является разновидностью микроскопии светлого поля. Чтобы выявить рельеф и сделать изображение более контрастным, поток направляют под большим углом к образцу.

Светлое поле в отраженном свете

Светопольная микроскопия в отраженном свете позволяет исследовать поверхности непрозрачных предметов (сплавов, покрытий, руд и др.). Свет падает на образец сверху, а основная оптическая система исполняет роль объектива и конденсора.

Светлое поле в отраженном свете позволяет исследовать поверхности непрозрачных предметов.

Изображение формируется за счет того, что элементы поверхности по-разному отражают и рассеивают попадающие лучи. Травление дает возможность изучить не только дефекты, но и микроструктуру и фазовый состав образца.

Темное поле

Метод темного поля предназначен для изучения прозрачных образцов, которые не абсорбируют свет. Специальный конденсор направляет лучи так, что они формируют полый конус, в центре которого находится объектив. Таким образом, большая часть лучей не попадает в оптическую систему.

Ультрамикроскопия

Метод ультрамикроскопии является разновидностью темнопольного. Для исследования образцов используют сильные источники света, а лучи направляют перпендикулярно предметному столу. Эффект рассеяния волн позволяет обнаружить частицы менее 10 нм.

Ультрамикроскопия — метод наблюдения и анализа коллоидных частиц.

Фазовое контрастирование

Метод фазового контраста позволяет изучать прозрачные и неокрашенные образцы. При малом различии в коэффициенте преломления изображение нельзя получить ни на светлопольном, ни на темнопольном микроскопе, поскольку разница в поглощении и рассеянии света будет минимальной.

Однако при прохождении через образец волна приобретает фазовый рельеф, который фиксируется специальным объективом. В изображении он отображается как различие в яркости элементов.

Аноптральный контраст

Данная методика является подвидом фазовой микроскопии. На иммерсионную линзу наносят кольцо из сажи, которое пропускает 10% лучей и совпадает с контуром кольцевой диафрагмы конденсора. При отсутствии образца амплитуда световых волн уменьшается на 90%.

За счет этого поле исследования получается темным, а частицы образца — светлыми.

Поляризационный метод

Анализ анизотропных материалов проводят в свете, пропущенном через специальную фильтрующую пластинку. При прохождении через образец плоскость поляризации лучей меняется.

По разнице между начальными и конечными характеристиками волн определяют количество оптических осей, их ориентацию и др.

Интерференционная микроскопия

Интерференционный метод основан на параллельном прохождении 2 лучей через предметный столик и мимо него. В окуляре микроскопа когерентные волны соединяются и интерферируют между собой.

При прохождении через образец первый луч запаздывает по фазе, что влияет на результирующую амплитуду и яркость изображения.

Люминесценция или флуоресценция

Принцип люминесцентной микроскопии основан на том, что некоторые образцы испускают видимый свет после облучения ультрафиолетом. Перед исследованием препараты обрабатывают флуоресцирующими антисыворотками, порошками или маркерами.

Строение современного светового микроскопа

Микроскоп световой — это оптический инструмент, предназначенный для исследования объектов, невидимых невооруженным глазом. Световые микроскопы можно разделить на две основные группы: биологические и стереоскопические. Биологические микроскопы также часто называют лабораторными, медицинскими — это микроскопы для исследования тонких прозрачных образцов в проходящем свете. Биологические лабораторные микроскопы имеют большое увеличение, наиболее распространенное — 1000х, но некоторые модели могут иметь увеличение до 1600х.

Стереоскопические микроскопы используют для исследования непрозрачных объемных объектов (монет, минералов, кристаллов, электросхем и пр.) в отраженном свете. Стереоскопические микроскопы обладают небольшим увеличением (20х, 40х, некоторые модели – до 200х), но при этом они создают объемное (трехмерное) изображение наблюдаемого объекта. Данный эффект очень важен, например, при исследовании поверхности металла, минералов и камней, так как позволяет обнаружить углубления, трещины и прочие элементы структуры.

  1. Окуляр
  2. Насадка
  3. Штатив
  4. Основание
  5. Револьверная головка
  6. Объективы
  7. Координатный столик
  8. Предметный столик
  9. Конденсор с ирисовой диафрагмой
  10. Осветитель
  11. Переключатель (вкл./выкл.)
  12. Винт макрометрической (грубой) фокусировки
  13. Винт микрометрической (точной) фокусировки

Оптическая система микроскопа

Оптическая система микроскопа состоит из объективов, расположенных на револьверной головке, окуляров, также может включать в себя призменный блок. С помощью оптической системы собственно и происходит формирование изображения исследуемого образца на сетчатке глаза

Поэтому важно обращать внимание на качество оптики, используемой в оптической конструкции микроскопа. Заметим, что изображение, полученное с помощью биологического микроскопа, — перевернутое

Увеличение микроскопа можно рассчитать по формуле:

УВЕЛИЧЕНИЕ = УВЕЛИЧЕНИЕ ОБЪЕКТИВА Х УВЕЛИЧЕНИЕ ОКУЛЯРА.

Механическая система микроскопа

Механическая система состоит из тубуса, штатива, предметного столика, механизмов фокусировки, револьверной головки.

Механизмы фокусировки используют для фокусировки изображения. Винт грубой (макрометрической) фокусировки используют при работе с малыми увеличениями, а винт точной (микрометрической) фокусировки – при работе с большими увеличениями. Детские и школьные микроскопы, как правило, имеют только грубую фокусировку. Однако, Вы выбираете биологический микроскоп для лабораторных исследований, наличие тонкой фокусировки является обязательным

Обратите внимание, на рисунке приведен пример биологического микроскопа с раздельными точной и грубой фокусировкой, при этом в зависимости от конструктивных особенностей многие микроскопы могут иметь коаксиальные винты макро- и микрометрической регулировки фокуса. Отметим, что стереомикроскопы имеют только грубую фокусировку

В зависимости от конструктивных особенностей микроскопа фокусировка может осуществляться перемещением предметного столика в вертикальной плоскости (вверх/вниз) либо тубуса микроскопа с его оптическим блоком также в вертикальной плоскости.

Осветительная система микроскопа

Осветительная система состоит из источника света, конденсора и диафрагмы.

Источник света может быть встроенный или внешний. Биологические микроскопы имеют нижнюю подсветку. Стереоскопические микроскопы могут быть оснащены нижней, верхней и боковой подсветкой для разных типов освещения препаратов. Детские биологические микроскопы могут иметь дополнительную верхнюю (боковую) подсветку, практическое применение которой, на самом деле, как правило, является бессмысленным.

Разрешающие способности

Одним из параметров микроскопа является его разрешающая способность. Различные виды микроскопов имеют, соответственно, разный показатель этой характеристики. Так что же это такое?

Разрешающая способность – это возможности прибора показывать четкое и качественное изображение, картинку двух расположенных рядом, фрагментов исследуемого объекта. Показатель степени углубления в микромир и общая возможность его исследования базируются именно на этой способности. Данную характеристику определяет длина волны излучения, которую используют в микроскопе. Главным ограничением является невозможность получения картинки объекта, размеры которого меньше размера длины излучения.

Ввиду написанного выше становится очевидно, что благодаря разрешающей способности мы можем получать четкое изображение деталей изучаемого объекта.

Люминесцентная (флюоресцентная) микроскопия

Основы люминесцентной микроскопии были заложены А. Келером, обосновавшим принципиальную возможность подобного метода исследования. Первое устройство для его осуществления впервые было создано в 1911 г., однако широкое распространение получило двумя десятилетиями позже, когда для окрашивания препаратов были предложены специальные вещества – флюорохромы, избирательно связывающиеся с определенными структурами клеток (М. Хайтингер, 1933-1935). Чуть позже было предложено коньюгировать флюорохромы с антителами, что положило начало метода иммунофлюоресценции (А.Н. Кунс, 1942). В бывшем СССР наибольший вклад в развитие метода люминесцентной микроскопии и создание отечественной промышленностью люминесцентных микроскопов и устройств, основанных на этом принципе, внес М.Н. Мейсель (1953).

В основе люминесцентной микроскопии (от лат. lumen — свет; греч. micros — малый + skopeo — рассматривать) лежит принцип люминесценции (видимого глазом свечения) микроорганизмов, клеток, тканей или отдельных структур. При этом физические основы возникновения свечения связаны с процессом поглощения определенными молекулами падающего на них света с последующим испусканием квантов с другой (большей) длиной волны (правило Стокса).

Первичная (собственная) флюоресценция возникает без специальной обработки препаратов и присуща ряду биологически активных веществ, таких, как ароматические аминокислоты, порфирины, хлорофилл, витамины А, В2, В1 , некоторые антибиотики (тетрациклин) и химиотерапевтические вещества (акрихин, риванол). Вторичная (наведенная) флюоресценция возникает в результате обработки микроскопируемых объектов флюоресцирующими красителями – флюорохромами. Некоторые из этих красителей диффузно распределяются в клетках, другие избирательно связываются с определёнными структурами клеток или даже с определёнными химическими веществами.

Для проведения данного вида микроскопии используются специальные люминесцентные (флюоресцентные) микроскопы, отличающиеся от обычного светового микроскопа наличием мощного источника освещения (ртутно-кварцевая лампа сверхвысокого давления или галогеновая кварцевая лампа накаливания), излучающего преимущественно в длинноволновой ультрафиолетовой или коротковолновой (сине-фиолетовой) области видимого спектра.

Данный источник используется для возбуждения флюоресценции, прежде, чем испускаемый им свет проходит через специальный возбуждающий (сине-фиолетовый) светофильтр и отражается интерференционной светоделительной пластинкой, почти полностью отсекающими более длинноволновое излучение и пропускающими только ту часть спектра, которая возбуждает флюоресценцию. При этом в современных моделях люминесцентных микроскопов возбуждающее излучение попадает на препарат через объектив (!) После же возбуждения флюоресценции возникающий свет вновь попадает в объектив, после чего проходит через расположенный перед окуляром запирающий (желтый) светофильтр, отсекающий коротковолновое возбуждающее излучение и пропускающий свет люминесценции от препарата к глазу наблюдателя.

В силу использования подобной системы светофильтров интенсивность свечения наблюдаемого объекта обычно невелика, в связи с чем люминесцентную микроскопию следует проводить в специальных затемненных помещениях.

Важным требованием при выполнении данного вида микроскопии является также применение нефлюоресцирующих иммерсионных и заключающих сред. В частности, для гашения собственной флюоресценции кедрового или иного иммерсионного масла к нему добавляют небольшие количества нитробензола (от 2 до 10 капель на 1 г). В свою очередь в качестве заключающих сред для препаратов могут быть использованы буферный раствор глицерина, а также нефлюоресцирующие полимеры (полистирол, поливиниловый спирт). В остальном при проведении люминесцентной микроскопии применяют обычные предметные и покровные стёкла, пропускающие излучение в используемой части спектра и не обладающие собственной люминесценцией.

Соответственно, важными преимуществами люминесцентной микроскопии являются:

1) цветное изображение;

2) высокая степень контрастности самосветящихся объектов на черном фоне;

3) возможность исследования клеточных структур, избирательно поглощающих различные флуорохромы, являющиеся при этом специфическими цитохимическими индикаторами;

4) возможность определения функционально-морфологических изменений клеток в динамике их развития;

5) возможность специфического окрашивания микроорганизмов (с использованием иммунофлюоресценции).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector