Анатомия широты. 2 часть

Содержание:

Электромагнитная совместимость частотных преобразователей

Электромагнитная совместимость технических средств — это нормальная (с требуемым качеством) работоспособность технического оборудования в реальной окружающей обстановке несмотря на непреднамеренное воздействие электромагнитных помех и способность не создавать недопустимых помех другой технике.

Все модели векторных преобразователей частоты оснащаются сетевыми фильтрами, чем обеспечивается необходимый уровень ЭМС. Фильтры допускается не применять в диапазоне до 30 кВт. Все преобразователи частоты большей мощности снабжаются встроенными фильтрами по умолчанию. Встроенный фильтр даёт возможность доводить до минимума наводки и помехи в электронной технике.

Что такое электрический фильтр

Электрический фильтр – это устройство для выделения желательных компонентов спектра (частот) электрического сигнала и/или для подавления нежелательных. Для остальных частот, которые не входят в полосу пропускания, фильтр создает большое затухание, вплоть до полного их исчезновения. Характеристика идеального фильтра должна вырезать строго определенную полосу частота и “давить” другие частоты до полного их затухания. Ниже пример идеального фильтра, который пропускает частоты до какого-то определенного значения частоты среза.

На практике такой фильтр реализовать нереально. При проектировании фильтров стараются как можно ближе приблизиться к идеальной характеристике. Чем ближе характеристика АЧХ к идеальному фильтру, тем лучше он будет исполнять свою функцию фильтрации сигналов.

Фильтры, которые собираются только на пассивных радиоэлементах, таких как катушка индуктивности, конденсатор, резистор, называют пассивными фильтрами. Фильтры, которые в своем составе имеют один или несколько активных радиоэлементов, типа транзистора или , называют активными фильтрами.

В нашей статье мы будем рассматривать пассивные фильтры и начнем с самых простых фильтров, состоящих из одного радиоэлемента.

Фильтры для динамиков своими руками

Сделать фильтр для динамика совсем не сложно. Он состоит всего из двух элементов – конденсатора и катушки индуктивности. Рассчитать параметры радиоэлементов для пассивной схемы низкой частоты второго порядка проще всего на онлайн калькуляторе. Там можно задать желаемый уровень среза и сопротивление акустической головки. Программа выдаст требуемую ёмкость конденсатора и индуктивность катушки. Например, выбран уровень среза 150 Гц, а сопротивление динамика равно 4 Ом. Калькулятор выдаст следующие значения:

  • Ёмкость конденсатора – 187 мкф
  • Индуктивность катушки – 6,003 мГн

Требуемую ёмкость можно получить из параллельно соединённых конденсаторов К78-34, которые специально разработаны для работы в акустических системах. Кроме того есть обновлённая линейка конденсаторов аналогичного типа. Это KZKWhiteLine. В качестве недорогих аналогов, радиолюбители часто используют конденсаторы типа МБГО или МБГП.

Катушка индуктивности на 6 мГн наматывается на оправке диаметром 1 см и длиной 6 см. Поскольку катушка не имеет магнитного сердечника в качестве бобины можно использовать цилиндр из любого материала, на который для удобства намотки, нужно сделать щёчки. Для намотки используется медный провод типа ПЭЛ диаметром 1 мм. Длина проволоки 84 метра. Намотку нужно делать виток к витку.

Фильтр для автомагнитолы сделать самому

Хотя мы уже живём в XXI веке, в то время когда наши космические корабли бороздят просторы вселенной, в нашем родном социуме до сих пор существует некая каста автовладельцев, в автомобилях которых отсутствует фильтр для питания автомагнитолы. Их не смущает ни низкое качество звука издаваемого из динамиков их акустической системы, ни хрипы, ни гудения и не гул двигателя. Конечно же, все эти проблемы легко решаемы заменой старой автомагнитолы на более современную цифровую и многофункциональную имеющую процессорное управление, но, к сожалению, иногда и этот проверенный способ не помогает. Поэтому в данной статье вашему вниманию представлена инструкция о том, как своими руками выявить и устранить лишние шумы автомобильной акустики.

Предназначение

Сделать фильтр для сабвуфера

Фильтр или кроссовер(см.Самодельные кроссоверы для акустики и их предназначение), как его еще называют, сегодня выполняет важнейшую функцию. Дело в том, что практически все современные динамики, включая и сабвуфер, воспроизводят эффективно только определенную долю частот. К примеру, тот же басовик воспроизводить хорошо в состоянии только низкие басы.

Фильтр для автомобильного сабвуфера

За границами «родной» полосы (эффективно воспроизводимой), звуковое давления, идущее из динамика, заметно снижается и возрастает одновременно с этим уровень искажений. В таком случае говорить о каком-то качестве звука просто глупо и следовательно, чтобы решить проблему, приходится использовать в аудиосистеме несколько динамиков(см.Как выбрать динамики для автомагнитолы своими силами). Такова реалия: это происходит и в домашней акустике, и в автомобильной. Это не новость.

Типичные схемы расположения динамиков в авто и роль фильтров

Динамики в авто

Касательно автомобильной акустики хотелось бы выделить две типичные схемы построения системы звука, с которыми знакомы, наверное, все, кто много мало знаком с автозвуком.Речь идет о следующих схемах:

Наиболее популярная схема подразумевает три динамика. Это басовик (нацеленный исключительно на низы), динамик средних и низких частот (мидбасс) и отвечающий за воспроизведение ВЧ, твитер.

Фильтр низких частот сделать самому для сабвуфера

Именно для того, чтобы не нарушать это требование, предназначены электрические фильтры, в роль которых входит выделение конкретных «родных» частот и подавление «чужих».

Типы фильтров

Фильтры(см.Как сделать самому фильтр для автомагнитолы) частот различаются по типам.Принято выделять следующие варианты:

Обычные фильтры, принцип действия которых сводится к тому, чтобы у их катушек индуктивности сопротивление возрастало с ростом частоты сигнала и спадало у конденсаторов, которыми они наделены. Несложно догадаться, что в таких фильтрах эффективно пропускают НЧ катушки индуктивности, а ВЧ – конденсаторы.

Полосовой фильтр

  • Режекторный фильтр – полная противоположность полосовому. Здесь та полоса, которая ПФ пропускается без изменений, подавляется, а полосы вне этого интервала усиливаются;
  • ФИНЧ или фильтр подавления инфранизких частот стоит особняком. Принцип его действия основывается на подавлении высоких частот с низким показателем среза (10-30Гц). Предназначение этого фильтра – непосредственная защита басовика.

Нч фильтр для сабвуфера самому

Параметры

Кроме типов фильтров, принято разделять и их параметры.К примеру такой параметр, как порядок, свидетельствует о количестве катушек и конденсаторов (реактивных элементов):

  • 1-ый порядок содержит только один элемент;
  • 2-ой порядок два элемента и т.д.

Другой, не менее важный показатель – крутизна спада АЧХ, показывающая, насколько резко фильтр подавляет «чужие» сигналы.

Для сабвуфера

В принципе, любой фильтр, в том числе и этот, представляет собой сочетание нескольких элементов. Обладают компоненты эти свойством избирательно пропускать сигналы определенных частот. Принято разделять три популярные схемы этого разделителя для басовика.Они представлены ниже:

Первая схема подразумевает самый простой разделитель (изготовить который своими руками, не составит никакой сложности). Он выполнен в виде сумматора и стоит на одном транзисторе. Конечно, серьезного качества звука с таким простейшим фильтром не добиться, но из-за своей простоты, он прекрасно подходит любителям и начинающим радиоманам;

Простая схема

Две другие схемы намного сложны, чем первая. Построенные по эти схемам элементы, размещаются между местом выхода сигнала и входом усилителя басовика.

Каким бы ни был разделитель, простейшим или сложным, он должен иметь следующие технические характеристики.

Питание/напряжение 12-35 В
Частота среза 100 Гц
Потребление тока 5 мА
Усиление «родной» частотной полосы 6 дБ
Подавление «чужой» полосы 12 дБ

Универсальный перестраиваемый активный фильтр с регулировкой частоты и добротности.

Полосовой фильтр, режекторный фильтр, фильтр нижних (ФНЧ) и верхних частот (ФВЧ) в одном флаконе.

Хорошо, когда всё хорошо, и от фильтра требуется стабильная работа на фиксированной частоте при заданном параметре добротности. Такие схемотехнические решения мы подробно рассмотрели на предыдущей странице. Иногда, однако, возникает необходимость построения такой схемы, в которой резонансную частоту, добротность и коэффициент передачи было бы можно настраивать независимо друг от друга. А если в качестве бонуса возникает возможность придавать полученному изделию АЧХ различных типов фильтров, то тут уже, как говорится, не устройство, а — сам себе и швец, и жнец, и в дуду игрец.

На Рис.1 приведена схема фильтра, удовлетворяющая этим требованиям

Важной особенностью схемы является то, что она в зависимости от того, какой выход используется, работает одновременно как селективный (полосовой), заграждающий (режекторный), фильтр нижних частот и фильтр верхних частот

Расчёт элементов схемы следует производить исходя из простейших формул: Кпередачи = R1/P1 ; Q(добротность) = P2/R2 ; F(частота) = 1/(2*π*P3*C1) .

Частота среза/резонанса/режекции рассчитывается точно так же, как у простейших RC фильтров первого порядка. Для удобства перенесу сюда таблицу для расчёта этой частоты при фиксированных значениях сопротивления сдвоенного потенциометра Р3 и ёмкости конденсатора С1.

Теоретически, параметр добротности, при котором сохраняется устойчивость схемы без срыва в генерацию, может достигать 100. Однако повышение значения этого параметра выше единицы скорее важны для полосового и режекторного фильтров. У ФНЧ и ФВЧ при Q>1 изменяется форма АЧХ и они начинают приобретать свойства полосовых фильтров. Продемонстрирую это утверждение диаграммами.

На Рис.2 сверху приведена АЧХ фильтра верхних частот с частотой среза 1кГц и добротностью, равной единице. Крутизна спада АЧХ этого фильтра в полосе подавления составляет — около 12 дБ/октаву, что эквивалентно фильтру Баттерворта 2-го порядка. На Рис.2 снизу приведена АЧХ того же фильтра с добротностью, равной 10. Как можно увидеть, наряду с увеличением крутизны спада АЧХ, сама АЧХ напоминает нечто среднее между ФВЧ и ПФ.

И для сравнения на Рис.3 приведу АЧХ полосового фильтра при тех же самых значениях добротности

Ну вот, совсем другой коленкор! То, что доктор прописал, причём, для режекторного фильтра — картина будет несколько иной. На Рис.4 рассмотрим АЧХ РФ при тех же значениях добротности.

Здесь при увеличении параметра добротности, наряду с сужением полосы подавления, наблюдается и отчётливое снижение глубины режекции.

Вот такой он, северный олень — этот универсальный активный фильтр с регулировкой частоты и добротности.

На самом деле, данное схемотехническое решение является основой различных промышленных ИМС — программируемых универсальных фильтров. Они представляют собой устройства различных видов АЧХ и порядков (вплоть до 8-го), реализуемых за счёт последовательного включения каскадов, подобных описанному фильтру 2-го порядка. Естественным образом, регулировка параметров ИМС ведётся не посредством вульгарного кручения переменных резисторов, а методом, основанном на периодической коммутации частотозадающих конденсаторов КМОП ключами и называемом в миру — методом коммутируемых (переключаемых) конденсаторов. Но это уже другая песня и её мы исполним в другом гала-концерте, а на следующей странице перейдём к расчёту LC — фильтров.

Источник

Определение частоты среза

Кривая на диаграмме Найквиста, конечно, не имеет типового спада характеристики, который мы хорошо знаем из графиков амплитудно-частотных характеристик, и фактически график Найквиста не дает нам конкретной информации о частоте среза схемы фильтра. Однако изучение взаимосвязи между частотой среза и кривой Найквиста является хорошим способом укрепить понимание концепции частоты среза в целом, а также даст нам некоторое представление об ограничениях подхода Найквиста для визуального изображения частотной характеристики.

Во-первых, нам нужно подумать о том, что на самом деле происходит на частоте среза, с точки зрения как амплитудно-частотной, так и фазо-частотной характеристики.

Частота среза относительно амплитуды

Вы, вероятно, знаете, что другое название для частоты среза – это «частота 3 дБ» (или –3 дБ), и это напоминает нам о том, что фильтр нижних частот первого порядка обеспечивает ослабление на 3 дБ (или, что эквивалентно, усилению –3 дБ), когда входная частота равна ω. Мы не используем децибелы на графике Найквиста, поэтому вместо –3 дБ мы используем соответствующий коэффициент передачи в разах, который равен \(\frac{1}{\sqrt{2}}\)

Когда мы работаем с графиком в полярной системе координат, мы всегда должны помнить о треугольниках; например, амплитуда (модуль) комплексного числа определяется как гипотенуза прямоугольного треугольника, два катета которого являются действительной и мнимой частями; а для вычисления фазы (угла) комплексного числа мы используем тригонометрические функции. Теперь, когда вы думаете с точки зрения треугольников, коэффициент \(\frac{1}{\sqrt{2}}\) дает вам какие-нибудь идеи?

Рисунок 2 – Прямоугольный треугольник. Длина катетов равна 1

Как показано выше, коэффициент \(\sqrt{2}\) вступает в игру всякий раз, когда у прямоугольного треугольника два катета равной длины. Если уменьшить длину катетов до 0,5, длина гипотенузы будет равна \(\sqrt{2} \times 0,5\), что то же самое, что \(\frac{1}{\sqrt{2}}\).

Рисунок 3 – Прямоугольный треугольник. Длина катетов равна 0,5

Итак, что же всё это значит? Рассмотрим следующий график Найквиста:

Рисунок 4 – Это график Найквиста для фильтра нижних частот первого порядка

Обратите внимание, что я не добавил часть графика, которая соответствует отрицательным частотам

Как видите, в самой нижней точке кривой коэффициент усиления фильтра равен \(\frac{1}{\sqrt{2}}\), где абсолютное значение действительной части равно абсолютному значению мнимой части; это и есть местоположение частоты среза на графике Найквиста для фильтра нижних частот первого порядка. То же самое отношение применяется к фильтру верхних частот первого порядка, за исключением того, что в этом случае частота среза находится в самой высокой точке кривой:

Рисунок 5 – Частота среза фильтра верхних частот первого порядка на диаграмме Найквиста

Разница заключается в том, что сдвиг фазы фильтра верхних частот с увеличением частоты изменяется от +90° до 0°, тогда как фаза фильтра нижних частот изменяется от 0° до –90°. Поскольку угол измеряется против часовой стрелки от положительной действительной оси, положительный сдвиг фазы отображается над действительной осью, а отрицательный сдвиг фазы отображается ниже действительной оси.

Также обратите внимание, что на этих двух графиках есть стрелки, указывающие в противоположных направлениях: на графике фильтра нижних частот стрелка указывает на начало координат, поскольку с увеличением частоты коэффициент усиления уменьшается; на графике фильтра верхних частот она указывает в сторону от начала координат, поскольку с увеличением частоты коэффициент усиления увеличивается

Частота среза относительно сдвига фазы

Мы также можем найти частоту среза на графике Найквиста, если вспомнить, что сдвиг фазы на 90°, создаваемый фильтром первого порядка, центрирован относительно частоты среза. Другими словами, фазовый сдвиг при ω составляет +45° или –45°. Вектор, нарисованный в комплексной плоскости, будет иметь угол +45° или –45°, если его действительная и мнимая части имеют одинаковые абсолютные значения, и это приводит нас к тем же геометрическим соотношениям, которые мы обнаружили при рассмотрении частоты среза с точки зрения амплитуды отклика.

Рисунок 6 – Частота среза фильтра нижних частот первого порядка на диаграмме НайквистаРисунок 7 – Частота среза фильтра верхних частот первого порядка на диаграмме Найквиста

Кроссовер акустический — схемы для аудио колонок и сабвуфера своими руками

Самодельный акустический кроссовер применяемый в домашних колонках или сабвуферах изготовить собственными руками не представляет никакой сложности. Конечно, для этого нужно иметь хоть какие то навыки и прямые руки.

Зачем нужен кроссовер акустический в звуковой системе

Этот электронный прибор собранный по типу фильтров и играет важную роль в акустике. А предназначен он, чтобы разделять поступающий от источника сигнал на несколько рабочих частотных диапазонов используемыми динамиками. Кроссовер практически выполняет работу фильтра по отсеиванию ненужной частоты, тем самым фильтруя весь звуковой тракт.

Подключение кроссовера к колонке

В качестве простого примера здесь можно привести высокочастотные динамики, называемые пищалками. Так вот, если бы в аудио колонках не было установлено акустических кроссоверов, то пищалки просто бы захлебнулись всем спектром средних и особенно басовых частот хлынувшим на них. Ясное дело, что в таком случае говорить о каком то детализированном воспроизведении звука говорить не приходится. Динамические излучатели высокочастотного диапазона не могут воспроизводить другие частоты, кроме высоких.

Какие бывают типы кроссоверов

Аудио кроссоверы, это специальные электронные приборы в составе акустических систем, по типу они бывают активного и пассивного действия, двухполосные и трехполосные.

Положительные и отрицательные стороны пассивного фильтра частот

Установка и подключение конструкции частотного фильтра в колонках как правило выполняется в самой ближней точке от динамика.

Из этого следует, что при таком варианте, хватит только одного усилителя мощности, чтобы получить качественный звук. Такая схема использования пассивного фильтра говорит о его положительной стороне в работе акустики.

В продаже акустические фильтры бывают как в виде отдельных модулей так и встроенных в акустику, в основном расчитанные на две или три полосы пропускания. К недостаткам таких электронных устройств пассивного действия можно отнести их неспособность выдерживать длительную максимальную нагрузку. В случае долговременного использования пассивного кроссовера в режиме пиковой нагрузки, чревато входом его из строя.

Кроссовер акустический активного типа, его плюсы и минусы

Активный кроссовер в противовес пассивного имеет возможность корректного выбора и прецизионной настройки частоты среза. В частности, именно эта функция в устройстве считается наиболее ценной в плане создания качественного звука.

Расчет амплитудно-частотной характеристики фильтра

Мы можем рассчитать теоретическое поведение фильтра нижних частот, используя частотно-зависимую версию типового расчета делителя напряжения. Выходное напряжение резистивного делителя напряжения выражается следующим образом:

Рисунок 9 – Резистивный делитель напряжения

RC фильтр использует эквивалентную структуру, но вместо R2 у нас конденсатор. Сначала мы заменим R2 (в числителе) на реактивное сопротивление конденсатора (XC). Далее нам нужно рассчитать величину полного сопротивления и поместить его в знаменатель. Таким образом, мы имеем

Реактивное сопротивление конденсатора указывает величину противодействия протеканию тока, но, в отличие от активного сопротивления, величина противодействия зависит от частоты сигнала, проходящего через конденсатор. Таким образом, мы должны рассчитать реактивное сопротивление на определенной частоте, и формула, которую мы используем для этого, следующая:

В приведенном выше примере схемы R ≈ 160 Ом, и C = 10 нФ. Предположим, что амплитуда Vвх равна 1 В, поэтому мы можем просто удалить Vвх из расчетов. Сначала давайте рассчитаем амплитуду Vвых на частоте необходимой нам синусоиды:

Амплитуда необходимого нам синусоидального сигнала практически не изменяется. Это хорошо, поскольку мы намеревались сохранить синусоидальный сигнал при подавлении шума. Этот результат неудивителен, поскольку мы выбрали частоту среза (100 кГц), которая намного выше частоты синусоидального сигнала (5 кГц).

Теперь посмотрим, насколько успешно фильтр ослабит шумовую составляющую.

Амплитуда шума составляет всего около 20% от первоначального значения.

Одноэлементные фильтры

Как вы поняли из названия, одноэлементные фильтры состоят из одного радиоэлемента. Это может быть либо конденсатор, либо катушка индуктивности. Сами по себе катушка и конденсатор не являются фильтрами – это ведь по сути просто радиоэлементы. А вот вместе с выходным сопротивлением генератора и с сопротивлением нагрузки их уже можно рассматривать как фильтры. Здесь все просто. Реактивное сопротивление конденсатора и катушки зависят от частоты. Подробнее про реактивное сопротивление вы можете прочитать в этой статье.

В основном одноэлементные фильтры применяются в аудиотехнике. В этом случае для фильтрации используется либо катушка, либо конденсатор, в зависимости от того, какие частоты надо выделить. Для ВЧ-динамика (пищалки), мы последовательно с динамиком соединяем конденсатор, который будет пропускать через себя ВЧ-сигнал почти без потерь, а низкие частоты будет глушить.

Для сабвуферного динамика нам нужно выделить низкие частоты (НЧ), поэтому последовательно с сабвуфером соединяем катушку индуктивности.

Номиналы одиночных радиоэлементов можно, конечно, рассчитать, но в основном подбирают на слух.

Для тех, кто не желает заморачиваться, трудолюбивые китайцы создают готовые фильтры для пищалок и сабвуфера. Вот один из примеров:

На плате мы видим 3 клеммника: входной клеммник (INPUT), выходной под басы (BASS) и клеммник под пищалку (TREBLE).

RС-фильтры

RС-фильтр высоких частот

Схема RC-фильтра верхних (высоких) частот и его амплитудно-частотная характеристика показаны на рис. 1.

Рис. 1 — Схема и амплитудно-частотная характеристика высокочастотного CR-фильтра.

В этой схеме входное
напряжение прикладывается и к резистору,
и к конденсатору. Выходное же напряжение
снимается с сопротивления. При уменьшении
частоты сигнала возрастает реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
цепи. Поскольку входное напряжение
остается постоянным, то ток, протекающий
через цепь уменьшается. Таким образом,
снижается и ток через активное
сопротивление, что приводит к уменьшению
падения напряжения на нем.

Фильтр характеризуется
затуханием, выраженным в децибелах,
которое он обеспечивает на заданной
частоте. RC-фильтры
рассчитываются таким образом, чтобы на выбранной частоте среза коэффициент передачи снижался приблизительно на 3
дБ (т.е. составлял 0,707 входного значения сигнала). Частота среза фильтра по уровню — 3 дБ определяется по формуле:

RС-фильтр низких частот

Фильтр низких частот имеет аналогичную структуру,
только емкость и сопротивление там
меняются местами. Амплитудно-частотную
характеристику такого фильтра можно
представить как зеркальное отображение
АЧХ предыдущего.

Рис. 2 — Схема и амплитудно-частотная характеристика низкочастотного RC-фильтра.

В этой цепи входное
напряжение также прикладывается и к
резистору, и к конденсатору, но выходное
напряжение снимается с конденсатора.
При увеличении частоты сигнала реактивное
сопротивление конденсатора, а
следовательно, и полное сопротивление
уменьшаются. Однако, поскольку это
полное сопротивление состоит из
реактивного и фиксированного активного
сопротивлений, его значение уменьшается
не так быстро, как реактивное сопротивление.
Следовательно, при увеличении частоты
снижение реактивного сопротивления (относительно полного сопротивления) приводит к уменьшению выходного напряжения. Частота среза этого фильтра по уровню -3 дБ также определяется по формуле предыдущего фильтра.

Рассмотренные
выше фильтры представляют собой RC-цепи,
которые характеризуются тремя параметрами,
а именно: активным, реактивным и полным
сопротивлениями. Обеспечиваемая этими
RC-фильтрами величина затухания зависит от отношения
активного или реактивного сопротивления
к полному сопротивлению.

При расчете любого RC-фильтра можно задать номинал либо резистора, либо конденсатора и вычислить значение другого элемента фильтра на заданной частоте среза. При практических расчетах
обычно задают номинал сопротивления,
поскольку он выбирается на основании
других требований. Например, сопротивление
фильтра является его выходным или
входным полным сопротивлением.

Полосовой RC-фильтр

Соединяя фильтры
верхних и нижних частот, можно создать
полосовой RC-фильтр,
схема и амплитудно-частотная характеристика
которого приведены на рис. 3.

Рис. 3 — Схема и АЧХ полосового RC-фильтра.

На схеме рис. 2. R1 — полное входное сопротивление; R2
полное выходное сопротивление, а частоты
низкочастотного и высокочастотного
срезов определяются по формулам:

Следует отметить,
что значение верхней частоты среза
()
должно быть по крайней мере быть в 10 раз
больше нижней частоты среза (),
поскольку только в этом случае
полосно-пропускающий фильтр будет
работать достаточно эффективно.

Многозвенные RC-фильтры

Одиночный RC-фильтр
не может обеспечить достаточного
подавления сигналов вне заданного
диапазона частот, поэтому для формирования
более крутой переходной области довольно
часто используют многозвенные фильтры
(рис. 4, 5). Частота среза многозвенного
фильтра определяется по формуле ВЧ, НЧ
RC-фильтра.
Добавление каждого звена приводит к
увеличению затухания на заданной частоте
среза примерно на 6 дБ.

Рис. 4 — Многозвенный высокочастотный фильтр

Рис. 5 — Многозвенный низкочастотный фильтр

Активные типы фильтров

Активный фильтр низких частот в первую очередь выделяется высокой полосой пропускания на уровне 5 Гц. Дополнительно в системе устанавливаются элементы для перехвата сигнала. Конденсаторы в данном случае припаиваются на специальной магнитной сетке. Для регулировки предельной частоты применяются транзисторы. Расширение возможностей устройства может осуществляться путем добавления в цепь конденсаторов. Емкость их должна составлять минимум 40 пФ.

Для положительной обратной связи применяется аналоговый модулятор. Устанавливается он в цепи только за конденсаторами. Колебательные контуры в системе можно стабилизировать при помощи стабилитронов. Пропускная способность их обязана составлять минимум 5 Гц. В данном случае параметр отрицательного сопротивления напрямую зависит от перекрытия диапазона частот.

Область применения

Фильтр высокой частоты можно использовать для того, чтобы выделять высокочастотные сигналы. Также часто его применяют при обработке аудиосигналов, например, в раздельных фильтрах, которые еще называют кроссоверными. Также они используются для обрабатывания изображений, чтобы можно было осуществить преобразование в частотной области.

Вот из чего состоит простейший фильтр высоких частот:

  • Резистор.
  • Конденсатор.

Работа сопротивления на емкость (R х С) есть постоянной времени (длительность протекания процесса) для данного фильтра, которая будет обратно пропорциональна частоте среза в герцах (единица измерения процессов колебаний).

Ферритовый фильтр

Ферритовые кольца – это пассивный способ борьбы с синфазными помехами. Когда стоит задуматься о пассивных способах борьбы с помехами? Тогда, когда требуется наличие:

  • любой конструкции, в которой длина проводов как силовых, так и сигнальных большая (от 30–40 см) и при этом нет экранов в виде алюминиевых или карбоновых лучей, экранированного кабеля;
  • длинных слаботочных цепей;
  • мощной передающей аппаратуры (600–800 МВт и более).

Ферритовые кольца фильтра синфазных помех обладают овальной формой для простоты монтажа. Через отверстие в кольце продеваются все три фазные жилы моторного кабеля.

П-образные

Можно сказать, что эти фильтры такие же, как и Г-образные, но к ним присоединяется вдобавок еще одна часть вначале. Все, что будет написано для Т-образных, будет верно и для П-образных. Отличия лишь заключаются в том, что у них увеличится шунтирующее действие на радиоцепь, стоящую спереди.

Для того чтобы рассчитать П-образный фильтр, вам надо будет использовать формулу делителя напряжения и добавить дополнительное шунтирующее сопротивление первого элемента.

Вот вам примеры перехода Г-образного RC фильтра в П-образный RC также высоких частот:

На изображении можно заметить, что к исходной цепи добавляется еще один резистор 2R, расположенный параллельно первому.

Вот пример преобразования в RL:

Здесь вместо резисторра выстпает катушка индуктивности. Так же добавляется вторая (2L), расположенная параллельно первой.

И третий пример — преобразования в LC:

Причины шумов и способы их устранения

Так как цена вопроса с заменой автомагнитолы на новую нас не устраивает, то я предлагаю найти причину посторонних шумов своими руками, старым проверенным способом – методом исключения. И что бы увеличить шансы на скорейшее выявление и устранение виновника помех советую начинать от большего к меньшему, а именно от головного устройства к периферии.

Магнитола

Достаём автомагнитолу из посадочного места (кстати, фон может пропасть уже при демонтаже головного устройства) и затем:

  • Попробуем отключить антенный штекер. Фонит? Идём дальше…;
  • Любым подходящим проводом(см.Провода для автомагнитолы: какие они бывают), минуя все соединения и разъёмы, прокладываем плюс и минус на головное устройство напрямую от аккумуляторной батареи;

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано — произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину

На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже

Пассивный фильтр НЧ для сабвуфера схема

Пассивный фильтр НЧ для сабвуфера своими руками можно сделать за короткое время. Схема не содержит дефицитных деталей и правильно собранная не требует настройки. Простой фильтр низких частот для сабвуфера состоит всего из двух деталей. Это катушка индуктивности и конденсатор. Для того чтобы определить электрические величины этих элементов лучше всего воспользоваться онлайн калькулятором. Для этого нужно набрать в строке поиска «Расчёт LC-фильтров. Онлайн калькулятор». Далее в окне нужно найти следующую таблицу.

Здесь достаточно указать нужную частоту среза, сопротивление нагрузки и нажать «Вычислить». Например, при сопротивлении динамика 4 Ома и частоте среза 220 Гц калькулятор выдаст ёмкость конденсатора в 255,7 микрофарад, а индуктивность 4,09 миллигенри. При сопротивлении головки 8 ом и подавлении «верхов» начиная с 250 Гц, данные будут 112,5 мкф и 7,2 мГн. Сделать фильтр низких частот для сабвуфера можно на простой печатной плате или использовать пластину из текстолита с контактными площадками.

В качестве конденсаторов используется ёмкость ближайшая по номиналу. В фильтре частот для сабвуфера можно использовать электролитические конденсаторы, но лучше поставить бумажные типа «МБГО», К73-16 или специально предназначенные для акустических систем полипропиленовые ёмкости К78-34. Для получения нужного номинала конденсаторы можно соединять параллельно. Катушки индуктивности можно купить готовые или намотать самостоятельно.

Что такое гиратор?

В русскоязычной литературе тема фильтров на гираторах встречается крайне редко. Информации кране мало. Обычно говорится что-то вроде: » гиратор способен превращать конденсатор в индуктивность» и приводится общая схема гиратора.

Вот то немногое, что становится известно о фильтре на гираторах из книги П. Хоровиц и У. Хилла “Искусство схемотехники”:

Гиратор действительно умеет превращать конденсатор в катушку. Наиболее часто он используется разработчиками микросхем когда необходима индуктивность. При этом гиратор располагают непосредственно на кристалле микросхемы.

Для радиолюбителей хорошей новостью станет то, что гиратор стабильно работает и при не самых точных используемых компонентах. Хотя конечно же лучше использовать прецизионные детали.

В англоязычной литературе фильтры на гираторах широко обсуждаются и применяются. Одним из наиболее интересных вариантов применения является фильтры на гираторах для ЦАП и АЦП.

Фото фильтров низких частот

Также рекомендуем просмотреть:

  • Полировка фар своими руками
  • Строительные леса своими руками
  • Точилка для ножей своими руками
  • Антенный усилитель
  • Восстановление аккумулятора
  • Мини паяльник
  • Как сделать электрогитару
  • Оплетка на руль
  • Фонарик своими руками
  • Как заточить нож для мясорубки
  • Электрогенератор своими руками
  • Солнечная батарея своими руками
  • Течет смеситель
  • Как выкрутить сломанный болт
  • Зарядное устройство своими руками
  • Схема металлоискателя
  • Станок для сверления
  • Нарезка пластиковых бутылок
  • Аквариум в стене
  • Врезка в трубу
  • Стеллаж в гараж своими руками
  • Симисторный регулятор мощности
  • Вечный фонарик
  • Нож из напильника
  • Усилитель звука своими руками
  • Трос в оплетке
  • Пескоструйный аппарат своими руками
  • Генератор дыма
  • Ветрогенератор своими руками
  • Акустический выключатель
  • Воскотопка своими руками
  • Туристический топор
  • Стельки с подогревом
  • Паяльная паста
  • Полка для инструмента
  • Пресс из домкрата
  • Золото из радиодеталей
  • Штанга своими руками
  • Как установить розетку
  • Ночник своими руками
  • Аудио передатчик
  • Датчик влажности почвы
  • Счетчик Гейгера
  • Древесный уголь
  • Wi-Fi антенна
  • Электровелосипед своими руками
  • Ремонт смесителя
  • Индукционное отопление
  • Стол из эпоксидной смолы
  • Трещина на лобовом стекле
  • Эпоксидная смола
  • Как поменять кран под давлением
  • Кристаллы в домашних условиях

Помогите проекту, поделитесь в соцсетях 😉

Фазировка динамиков

На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.

Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.

Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector